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A nonlinear equation is derived for the amplitude of a one-dimensional unsteady flow resul-
ting from a disturbance in the stability of the primary flow. The latter is also assumed to be
one-dimensional and independent of ¢t and the spatial coordinate. Supercriticality is assumed
to be small and the wave number spectrum to be discrete, though-arbitrarily dense. The eq~
uation is simplified under the assumption that the secondary flow can be represented using
the process of superposition of the wave packets with multiple wave numbers {accumulating
perturbations form a narrow wave packet). The equation has a large number of stable steady-
state solutions differing from each other by their wavelengths, and a unsteady problem is
solved in order to obtain the value of the wavelength. The latter solution is obtained in the
form of a series in the terms of the initial amplitude, and converges when ¢ is finite, When

t is large, the series is summ ed and validity of the solution is thus extended to the values
of t at which the series diverges. We find that a periodic motion is established in the sys-
tem and, that its wavelength characterizes the perturbation with the largest increment. A
double periodic turbulent motion is established for discrete values of the parameter (for
which the largest increment possesses two perturbations).

1. It is well known that, when the steady-state becomes unstable, a periodic motion of
amplitude O whose modulus satisfies [1 to 6]

dg/dt =2q (v + aq + bg® + ...), g=|Qf (1.1)

may be set up in the system. In this equation the increment y of the accumulating (in the
linear theory) perturbation and the magnitudes @ and b (connected with the nonlinear terms),
are functions of the parameters A; when A is critical, i.e. A, y= 0.

Fgq. (1.1} was derived under the assumption that the spectrum of eigenvalues of the line-
arized boundary value problem is discrete [1]. This is the case when e.g. the fluid moves
in a limited volume. In this paper we consider bounded sysiems, in which the longitudinal
dimension [ is large compared with the transverse dimension {e.g. in the problem on the flow
of fluid between two rotating cylinders [7] the length [ of the cylinders is assumed large
compared to the gap between them; again, in the investigation of the positive gas discharge
column [8], the length of the column was assumed large compared with the radius of the dis~
charge tube). When the steady-state and stability of such systems are investigated, the end
effects are neglected and the length is assumed to be infinite (I = o). This implies that the
steady-state parameters are independent of the longitudinal x-coordinate, while the eigen-
functions of the problem of stability of the steady-state are proportional to exp (ikx) where
the wave number ¥ may assume any real value. For any k there exists an infinite set (branch)
of eigenvalues p = y + i{] and each eigenvalue considered as a function of k, defines a con-
tinuous set (branch) of eigenvalues.

Fig. 1 illustrates the typical case of the onset of instability following the change in the
parameter value; the broken line shows the decrement of one of the stable branches {which
characterize only the decaying perturbations), The increment of the accumulating perturba~
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e tions will be maximum when
O k=ky(A) 1.2)
Y (k) = 1o+ Yavo" (kK — ko)? (1" < 0)

where, as usual, 1/kg is of the order of the transverse
. dimension of the system,
y(l,*) Supercriticality A= A — A« can be defined by the
’)’(2.) half-width of the A-interval in which y{k})> 0

Fig. 1 A= V'—‘ 2'}’0 / To” ~ VK (1 3)

In the following we shall always assume the supercriticality to be sufficiently small to
ensure that A < k.

The state of the systems under consideration is defined in terms of the parameters of the
infinite problem (*‘longitudinal’’ boundary conditions influence this state only near the ends
x= t%1). Therefore in the following the boundedness of the system is only reflected in
the fact that the deviations of the parameters from their equilibrium values can be given in
terms of a Fourier series in x. Consequently we find that the wave numbers assume the fol-
lowing discrete values

k=26n, d==m/l (n=041,..) (1.4)

in all relations f{k) of the infinite problem. Here k ;defines approximately the wave number
% of the discrete spectrum, associated with the largest increment |% — k| < 6.

The last expression implies that the approximation [ = o is applicable when 8K kgeIn
the following we shall assume that this condition holds, although the relation between &
and the half-width A in (1.3) may be arbitrary.

If A< 5, then only one perturbation accumulates in the system, Its wave number is
% =~ k» and ite amplitude is given by (1.1). When a <0, then a steady, space-periodic motion
whose wave number is X = kq, is set up in the system.

1f the supercriticality is large enough to ensure that

<A<k (1.5)

then a large number of perturbations (infinite if { = =) accumulates in the system. In this
case it is not at all obvious that the small amplitude motion which vanishes as A + 0,
should be space-periodic, If we accept this as an empirical datum, then the theoretical de-
termination of the amplitude and the wave number of the steady-state periodic motion, will
yield only one Eq. (1.1) in which the coefficients will be known functions of parameters and
of the wave number [5 and 6]. Thus the wave number of the steady-state solutions will re-
main an undefined parameter of the theory {9, 5 and 6].

To remove this indeterminacy, an equation (2.15) was obtained and solved in this paper.
It describes the interaction of a large number of accumulating perturbations.

2. In this Section we shall derive a method of obtaining the amplitude equation for the
accumulating perturbations from the initial hydrodynamic equations of the type

dX /dt = F{X,d(..)/dz, d(.)/dr,r, A {2.1)

where the vector X denctes the set of hydrodynamic variables {density, temperature, mag-
netic field etc.), x is the longitudinal coordinate and r denotes the set of ‘‘transverse’’ co-
ordinates.

We can assume without the loss of generality that the equilibrium state (independent of
t and x) is given by X = 0 and that the boundary conditions are linear in X, homogeneous and
do not contain any derivatives of X with respect to ¢ [s].

Initial deviation from the equilibrium state is assumed small

X (2, t=0) = eXy ()

Here the amplitude & - 0 and the function X, which describes the form of the deviation
is normalized in some manner. In the following we investigate the cases when X remains
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small at any instant of time and when (2.1) can be expanded into

% =LX + Y (L"X)... (L X) (2.2)

n=3

where the matrices L are, unlike F, independent of X and the boundary condition has the
form Ly X = 0. Solution X is sought in the form

X= 2 Y (k) =, Y(—k =Y (k) (2.3)
k
where & assumes the values given by (1.4} end the bar denotes a complex conjugate. Inser
ting (2.3) into (2.2) we obtain the following equation for ¥ (k)

a . o
LY = E, ; (L (k) Y (k)] - - [Ln" (k) ¥ ()] 24)

Y({t=0)=2Ys, Lo(k)Y=0 (ki+...+ky=k)

Here the matrices L (k) are obtained from the corresponding matrices appearing in (2.2),
by means of the substitution d{...})/dx - ik. Solution ¥ is sought in the form (*}

x
Yo r, M=QZ(k r, N) + 3 NZnlhs, . kni M Q k). Q (kn)  (2.5)

n=2 k
where the amplitude Q(k, t) satisfies Eq.
0
d
"&'?"sz + Zzgjan(k,,...,kn; A Q (k1) . .. Q (ka) (2.6)
n=—

and the magnitudes p, Q, Z and H become their complex conjugates on change of the sign
of the wave numbers.
Eq. (2.4) after the insertion of (2.5) and (2.6) becomes

o0
QD+ 3 1Q (k). .. Qka) D thry - - i kn) =10
n=g A
Values of Z,, and H,, are found, consecutively, from Eqs. D, = 0 together with the boun-
dary condition L,Z, = 0. The linear problem
D = pZ — LZ = 0, L,Z =0 2.7)
defines the equilibrium stability. We assume that the onset of instability follows the course
shown in Fig. 1. Parameters of the system are assumed to be such, that {1.5) holds.
In (2,5) and (2.6) the eigenvalue p = ¥ + i{} and the eigenfunction Z of the problem (2.7),
both defining the accumulating perturbations, must be used.
In the nonhomogeneous problem

Dy =ZpPp—LZp+ HpZ +¥n=0, LoZn=0, Pp=p(k)+...+plky) (28

the vector ¥, is expressed in the terms of previously found H and Z.
Solution Z,, can be obtained [10] with help of the Green's matric Glr, p, P, ) of the homo-
geneous problem (2.8)

2

Z,= é G(r, p» Po) 1HaZ (p) + ¥n (p)] dp

where the integration with respect to transverse coordinates p is performed over the trans-
verse section S of the system. The Green’s matrix can be represented by [10]

*) Here and in the next sum, wave numbers appear which satisfy the condition &k + ..+ k,
- ko
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4]
C==T—pz0rt 5

where G_ is regular when P, = p, U is the eigenfunction of the problem conjugate to (2.7)
corresponding to the eigenvalue p and the scalar product is

(2.8)

<Z-U>=§(Z-E") dp

The difference P, — p may become very small, e.g. if y (k) = 0, then Py = p when k; =
=ky=—ky =k

2 3

In accordance with (2.8) and {2.9), the vector Z_ will be finite for any &, if

Ho<Z-Uy+ (¥p-Uy=0, Zp= éa_uz,.z + ¥, dp

Here the first equation defines H,,, while the other defines Z,,.

Lety, be a minimal decrement of perturbations associated with stable branches. We may
expect that when £ » 0, then (2.5) and {2.6) describe the behavior of the system beginning
at the instant ¢ ~ 1/(y, + ¥,), when, in accordance with the linear theory, only those per-
turbations are essential which are associated with the unstable branch. Consequently we
may take

Qt=0)=ed (k) {2.10)
as the initial condition for (2.6). Here A is the component of the initial vector Yy correspon-
ding to the accumulating perturbations

AZ Uy = Yo U

Generally speaking, Eqs. (2.5) and (2.6) are more accurate than the approximation in
which the perturbations with large decrement given at ¢ = O are neglected. For example, in
the case illustrated in Fig, 1, the initial perturbation amplitudes of the unstable branch for
large k need not be taken into account, since their decrements exceed the perturbation decre«
ments of one of the stable branches. We can remove this excess of accuracy by reducing
(2.6) to an equation for accumulating perturbations with the wave number | k| = kg; these
perturbations will form a wave packet of the bandwidth equal to 2A.

By virtue of the condition A < &, nonlinear effect in the spectrum @ {k) causes the sep-
aration of the additional wave packets whose effective wave number is nk, (where n is an
integer). The amplitude of these packets can be expressed in the functional form in terms
of the amplitudes of the fundamental packets

o
QUe=nk) = D Dby 10mQy- - Qigm (240)
M)
while the equation for Q(k = kg) has the form
o
4Q _
- =+ 2 Dby, 149mQ1 - - - Qg (2.12)
M=)

Here and in the following we use the following abbreviation

D Q=D f k1, - k) Q k) ... Qk), Kyl = ko
k

and A become complex conjugates when & change their sign.
To find h,, 43y we must putk =nk, in (2.6) and assume in the summation performed
over k, that k; m m, ko where m is an integer, Inserting (2.11) and (2.12) into (2.6), we obtain

o0
Z 2 @y niamQy - - Qrigm =10
m==f}
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while the linear algebraic equation

yields Ay, n 4 2m-

Determination of A must however be preceded by the determination of all A ap-

n,n +2m
pearing in the matrix to the left of the diagonal drawn through 4, , 4., 4, (part of the mat-
rix is shown below)

/lo: c e ho4 ..

p .. Ins .. hys
fean C haa

Ngs ... has
hia

The wave packets are obtained from Y (k) in the similar manner. Relations (2.5) and
(2.11) yield

o
Y (k= nk)) = E 2 Vn, nsamQ1 -« - Qaygm (2.13)

m=0

where the magnitudes V are expressed in terms of Z and 4.

We can assume that the functions f{k,..., k) appearing in the sums of the form XfQ,,
s Q,, are symmetric, since the sum should not change under the permutation.of &k jyueey &
We use this property together with the relation Q(—k) = Q(k) to reduce (2.12) and (2.13) to

o
Y (k = nko) = Z E Yn, 'n+2mQ1 cr Qn+m6n+m+1 T 6n+2m (2'14)
m==0
dQ -
FTRE PQ + Z 2 P QuiaQmyz - - - Quiam (2.15)
m=1
(n -+ 2m)!
Yn. n+2m= m! (n + m)! 14 (kls' D) kn+ml - kn+m+1v -y _kn+2m_)
Pm= (:')m + 1) hl. 1+am (11'1,. .y k1+mv —k21-m' ey — k1+2m)
In (2.14) the summation over k is performed for the values satisfying
kit .+ kn+m—kn+m+1_'" '— kn+2m=k' ki=ko (2.16)

which, at n = 1, yield the condition for the sums over & in (2.15).

8. We shall first consider the stability of a steady-state periodic solution whose wave
number is k. This solution is defined by (2.14) and (2.15) in which only the amplitude Q{(k)
is different from zero; similar relations were obtained in [2, 3 and 5].

Eq. (2.15) for the steady-state amplitude Q(k) has the form

29 _Qp )+ 2 ok, R g (3.1)
m=1
m=1

Here and in the following
wp (ks k) =T (K, s .. k) =T+ iQm
am
Let us now assume that the amplitude distribution differs from the steady-state distribu-
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tion (in which only Q(k) # 0) by the infinitesimal perturbations Q°(k *); then (2.15) can be
linearized with respect to these perturbations to_obtain, taking into account (2.16) and the
symmetry of I°,

0
dQ° (¥’ o ,
WE) — Go[pte)+ 3 (m+ 1) on (K, k) "] (3.3)
ms==1
From (3.3) it follows that the periodic solution with the wave number k& will be stable,
if, for any k°,

U, ky=1k)+= D2 tmlk k) (m+1)g™<0 (3.4)
mas],

where g(k) is given by (3.2).
By (2.16), we consider only whose wave numbers which differ from kg by the amounts

~ A. Since the difference k” — k ~ A is small, we can write {3.4) with (3.2) taken into ace
count, as

a7 1 =
o Tt — kg <0 (3.5

o
U=gq X mq™pm+ (k'—k)
m=1

Here and below, functions of k  are assumed to be taken at k"= k.
Let y,{kq, ko) < 0. Then (3.2), (3.5) and (1.3) yield

gty = —v/v, |k—K|<A (3.6)
U=gy + K& — kY + (K —kPy =
= — Yo — Yo (k — ko2 + Yyve'! (K — 0)? (3.7)

By (3.7), the condition of stability U < 0 holds for periodic solutions whose wave nym-
ber k satisfies the condition | k — ko] <A/+/2. Solutions for which A |k - kol > A/\}f,
are unstable with respect to the perturbations whose wave numbers & are given by

(b — B <2 (k — ko)* — A?
Although investigation of the periodic solution stability strengthens restriction (3.6), it
does not yield the exact value of the wavelength. The problem whether a periodic solution

is established when the number of initial perturbations becomes large, remains unsettled.
This can only be found in the course of solving the initial problem (2.15) and (2.10).

4. We shall investigate, for simplicity, the behavior of the principal term X = 2ReX,
as t » oo, where
Xy = Q) QZei= (4.1)
Kk
and Q satisfies Eq. {2.15) in which only the lowest nonlinear term is retained (for this rea-
son the index of I'; shall henceforth be omitted).

Solution of {2.15), {2.10) is sought in the form of a series in terms of the initial amplitude
€

Q — Z e27'1+1 Q(n) (42)

==()

3

We easily obtain

t
o) __ pt n t -pt
Q% = Ae . Q B Sdte P ZZFQl(m‘)Qa(m”@s‘m’) (4.3)
0 m
where the summation is performed over k; and over the nonnegative integers m satisfying
the conditions
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ky + by — ks =k, my + mg+mg=n—1 (4.4)
From (4.3) we can obtain QU for large ¢. Let us consider
P M __
Qm ”‘Z‘M Asgs——i—},—i ’ A=A (kt)
P = p(ky) + p(ka) + B (ks)

Inserting (4.2) and (4.5) into (4.1) we find, that for large ¢, those terms of (4.5) will con-
tribute most to X4, for which

(4.5)

t Re (P — p) >1
In these terms the unity is small compared with the expiuential part and can be neglec-
ted, leaving only strong exponential dependence on the wave numbers. Below we shall see
that in the factors independent of ¢, all those k; should be taken into account which are
equal to the wave number X% at the maximum value of y,
Thus for y ot > 1 we have

oW = ’” —5— D\ expitP

Similarly we can find that when y,t > 1, then (4.3) i s satisfied by
Q" = (1 Ap ) SlexptP, (4.6)

Pn =p(kl) +.. +p(kn+1)+f’(kn+2)+ e +ﬁ(k2n+1)
where the summation is performed over k; satisfying

k1+--’+kn+1"”‘kn+2'—"-'-"“;kzn+1::k (4.7)
In the tems preceding the sum, all wave numbers are equal to %, while the coefficients
f are given by the following recurrent relation:

I‘ — —
fo=— D fndmims  fo=1 (4.8)

in which the summation is performed over those m, which satisfy the second condition of
(4.4).
Relations (4.6), (4.2) and {4.1) yield

Xnﬂ‘? Af,,

n=g

z x 7 (k) e'n (4.9)

where the sum is taken over the arbitrary numbers kyyeesy kop 44 and k is defined by (4.7).
Asymptotic behavior of the second sum of (4.9) depends essentially on t. If |y, | 6% < 1
(which does not contradict the condition y,¢> 1 since § K A), then the sums with similar
k differ little from each other and can be replaced by integrals over the wave numbers (see
Appendix); for such ¢ the system behaves like an infinite one.

In the opposite limiting case

ty—v)>1, y=v(®, v =maxly@—20),y@x-+28 (410)
the sum is asymptotically equal to the term
Z () exp lixz + tp (x) + 2nty ()]
in which k1 =... = k 5, 4;= %K. When ¢ is sufficiently large, a periodic motion whose wave=
length is equal to % is set up in the system

«© 3yt n
Xyy= Zeixs [Aeevté}o i ("’l_..%i‘-i) ] (4.11)
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Each term in the sum in (4.11) grows exponentially, although the whole sum may remain
finite at any t. The function of time appearing within the square brackets in (4.11) repre-
sents a solution of the initial problem

dQ/dt=pQ+TQ*Q*Q(0) =ed, p=y+iQ, I'=B+iD, y >0
for large t. Indeed, after the substitution (4.12)

Q = Re™, T = (e — 1)/ (2y)
the solution of (4,12) is easily obtained either directly, or employing the series (4.2). In
the first case the solution is

Q =ede™ (1 —2TBe*| A}y T/ B (4.13)
while in the second case we have
Q=cde™ D fo (| AL T (4.1%)
n=0

which coincides with the function of time in (4.11) when yt > 1. Comparing (4.13) and (4.14)
we see that the series in (4.14) converges (*) if

2TBe? |A |2 <1
fa=TQRC+D)... T+ @®—1)Tl/n

If B < 0 we have, for ¢ »+ oo,

Q—Va,expit(@+Dq,),  9,=—7/B
5. The results obtained above are easily generalized to the case of the exact Eq.
(2.15). Again we obtain the expression (4.6} in which

n
nfn= DTy D fmy - Fmgsdmisg - - Frgisg (Mt -+ My =n—1) (5.4)
i=l m
and where all wave numbers entering I are equal to %. Iuserting (4.6) and (4.2) into the
sum

ik —~ —
Xn.n-{»am = 2 31 ¥ Z"Y'n,nwm Ql e Qn+an+m+1 ‘.. Qm—zm (52)
K~ ko
we find, that any product of n + 2m magnitudes (X! tends asymptotically to the term, in
which all wave numbers are equal to %. Retaining only these terms we obtain

Xﬂ-n+2m = Yn,n+2m (k}. = ... == kn+2m = x) einxemme

where @ is a function of time given by {4.11), with the coefficients f given by (5.1). We find
that this function represents the solution of (3.1) for k= %, Q(0)= €4 (%) and yt > 1, and
we can easily confirm it by obtaining a solution of (3.1) in the form of (4.2).

Thus, when ¢ is sufficiently large (boundedness of the system becomes then essential),
a periodic motion of wavelength % is set up in the system.

This motion is described by (2.14) and (2.15) in which only Q (%) # 0; such relations can
be obtained using the methods given in [2, 3 and 5], assuming that the wave number (which
becomes the undefined parameter in all these methods) is equal to that value of 2, for
which the increment of the discrete spectrum has the largest value.

Behavior of the system at large ¢ can also be studied by obtaining the solution X of Eqs.
(2.1) in the form of a series in terms of the initial amplitude & and summing the terms con-
taining the same factor exp {ikx).

*} When ¢ -+ o, we continue the solution which has the form of a power series, analytically
into the region of divergence of the series. Similar procedure is widely applied in stat~
istics snd quantum field theory.
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Let us now investigate how the steady=state motion of the system depends on the para-
meter when (Fig. 1) kg is a function of A
ko (M kg + kg (h—Ay), kg =0 (5.3)
In accordance with (1.2), in this case there exists a discrete set of values A, for which
the increments of the discrete spectrum achieve the maximum at two points k, * 8. From
(5.3) it follows that
Ansy — Ap = G1/1, Gy =2081/|k,"| (5.4)
Thus the wave number X of the periodic motion will remain constant within the inter-
vals A, <A< Ap+; and will change discontinuously by 28 when A passes through A,. If
ke”> 0, then » increases together with increasing supercriticality A — A4,

Discontinuous change of the wave number is acompanied by the discontinuous change in
the amplitude of the steady-state motion. Let us denote

q = (I(K, )‘n)v q. = Q(x+26, ;“n)
Relation (3.2) yields, with accuracy of the order of ~5,

g, — q =206 [(35/ k) / (35! dg)Lup,
where § denotes the sum in (3.2). If y (kse, A4) <0, then ¢ is small when the value of the
supercriticality is small and

(g, — ) | ¢ = Gyfl, Ga = 281 (y,-0v/ 0k )i, v, (5.5)
the amplitude is approximately given by (3.2) in which & = ko (A):
q (%, A) = q (kg, \) [1 + (x — ko) Gy / (260)], | — k| < 6

Discontinuous amplitude changes given by (5.5) take place whenever A passes through
irrespective of the direction of change of A, unlike the changes which take place under

A
the impulsive excitation [4 and 5].
When A = A, , the steady-state motion of the system ceases to be pericdic and becomes

turbulent; it is then described by expressions (2.14) and (2.15) in which only Q4= Q{k, &

4 8) differ from zero. Indeed, the second sum of (4.9) is asymptotically equal to the sum of
those terms, in which k, =k, & 8, i=1l,00¢, 2n + 1, and where the values of the factors pre=
ceding the second sum can be taken as those at k = k. Then the expression (4.9) becomes
(4.1) where Q is the solution of the initial problem

99— p(k)Q +T2Q1Q:0s, Q= (0) =24 (ko) (5.6)
QO kkt8) =0, T =Ti(ko ko ko)=B+iD, B0

at the large values of t. Steady-state solution of (5.6) is
Qkk+8) =0, Q-=7Vqexpit(Q.+3¢D), q=—"1/B
and in the steady-state (5.2) represents s wave packet with the wave numbers given by

k=nky+N—2)8, N=n+2m, i=01..N
The bandwidth of this packet is equal to 28N. Beginning from N =~ kg/ &, the wave pack-
ets appearing in the sum

N
N -
Xn=20Xnan~|Q",  Xoan=ZXnn
ol
merge together, filling the whole range of the wave numbers (— Nk, Nko). Since

X=X, +XgFoo-d+Xn+...

it follows that in the steady-state pulsations may occur, which can be of any scale. At
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large A, turbulence develops.

If A= A, then the turbulent motion described here exists for some ¢ when |y° 152> 1
and the inequality (4.10) has the opposite sense (using the teminology of [12] we can say
that two degrees of freedom are excited in this turbulent motion).

6. In one~dimensional problems discussed above, k and x were pure numbers, When con-
sidering problems of motion of a medium between horizontal planes, we must teke k and =
as vectors and assume the product kx to be a scalar product

kz = k‘zl + k'zjy Izhll < Ya 1

In this case the vertical coordinate x5 will be the transverse one, and the distance bet~
ween the planes will be assumed very small compared with the horizontal dimension i,

Increments y of perturbations of plane-parallel flows in the x,~direction will be the lar~
gest [11] when k2= 0, k1 # 0. Therefore we can reduce (2.5) and (2.6) to (2.14) and (2.15),
provided that the supercriticality is small.

Let ko = (ko !, 0) be a vector for which y{ke, As) = 0. If in (2.15)

B = Re rl(k1=k3=ks=k's A'c)<o
then, provided that the supercriticality is small, a one~dimensional motion {(k2=0)ofa
small amplitude will be set up in the syatem.

When B > 0, a large amplitude motion takes place in the system, which may be neither
one~dimensional, nor periodic. It should disappear in the region A < A4 with decreasing su-
percriticality, when the infinitesimal perturbations decay [4 and 5.

In the problem dealing with the onset of convection between two horizontal planes the
magnitude ¥ = y(| k|), therefore a large number of perturbations whose wave vectors are
equal in their moduli accumulates in the system, even when the supercriticality is arbitra«
rily small. Unlike the problem on plane-parallel flows, the latter problem is basically two~
dimensional and needs a separate consideration.

7. In conclusion we may note that, when the system is bounded, the steady-state motion
has the wavelength for which the linear increment is largest. In some cases this also ap-
plies to infinite systems. If, however, the instability of an infinite system is removable,
then (see Appendix) the system retumns to the state of equilibrium,

Discreteness of the wave numbers imitates the discreteness of the spectrum of the sys~
tem, when the boundary conditions at x = & %1 are taken into account. Eigenfunctions f, (x,
r) of this spectrum corresponding to the accumnlating perturbations, can be characterized
by the number of extrema in x; this number increases with n. When n is large, the dependence
of f, on x can be isolated (except in the end regions) in the form of exp (inc,, x/I) where
¢, ~ 1 may depend on n; thus the right-hand sides of (5.4) and (5.5) may also depend on n.

Appendix. Wehave said before that, when ¢82|y,”| < 1, then the bounded system
behaves like an infinite one; in this case summation over k can be replaced everywhere by
integration as e.g.

> 1Qi... 0y »Sle' o QuS (k.. At ky—K)dky ... dk, Q" =12Q/8
The second sum in {4.9) can be replaced by the product of integrals of the type

J(@ t)= S Z (k) exp [ikz + tp (k)] dk (A1)

Behavior of this integral at large ¢t determines the type of instability of the equilibrium
state. We shall call the instability absolute when 1] ‘ <00 as t » o and removable, when J -«
+ 0[12]. Generally speaking, we must know how p (k) behaves in the complex k-plane, be=
fore we can obtain an estimate for J. The case given below when the group velocity v = (,’
in the expansion

p (k) = po+ (k — ko) iv+ 12 po” (k — ko)* + ...

is small, is an exception. Group velocity can be small in those systems, in which v = 0 for
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some A. When v is small, a saddle point (defined by p = 0) exists near k = k, and we have
J = (—2n/tp")" Z (k) e***P! (t = %) (A.2)

k=ky—ivip" =a+if, p=p,+Vs */p" =7+ iQ, p' =p”
Let us assume that the curves ¥, = v = 0 intersect in the Ay -plane (Fig. 2). By (A.2)
the instability is absolute if

¥ = Yo + Yay" ¥? |po”]? > O

Let the parameters A and i be such, that the instability is ab-
A solute {the corresponding region in Fig. 2 is shaded). Then from
{4.6), (4.9) and (A.2) we have

=

»=0 2%\t
- Xu= Z Ae| Ae " f,Z (k + 2niB) (— T}“)
>0 (A3)
2 \n . . .
Fig. 2 (1) exp liz (& + 20iB)+ (p+ 2im) 1]
where A = A (k) while f, is given by (4.8) in which I'/n is replaced by
T (k, k, k) / [2ny + p (k) — p (k + 2ni)] (A.4)

and the real part of the denominator is assumed positive
n < ng~ —vy/ (15"8%)
I we make the substitution k& + 2ni 8= k in the expression for f, and Z, then (A.3), (A.4),
{(4.13) and (4.14) yield readily

)‘zs (1 —B | de |*2rexp (29t — 2Bx) )-‘/:I‘/B

1t p" (A-3)

Xy Z (k) *=+Plde (

]

J— 3p
which becomes exact when v = 0. When B < 0, we have
Xpn—>ZVgexpilaz+t(R+4gD)), g¢=—y/B

In the case of removable instability, nonlinear effects are unimportant at any ¢ provided
that the initial deviation from equilibrium is sufficiently small. Return of the system to the
equilibrium state can be adequately described by linearized equations.

Fig. 2 shows that, when the supercriticality is sufficiently small, then the instability is
removable provided that v # O at the boundary of stability. This remains true even for lar~
ger values of v, since the decrement y in¢reases together with v. In a coordinate system
moving with velocity u = v, the instability is removable when y (v ~ u}< 0 (an estimate for
J(x — b, ¢) can be obtained from (A.2) by making the substitution v » (v — u) and multiply=
ing the result by exp(— ik,ut)). When u = v, then X, ,(x = vt, ¢) is given (with the accuracy
of up to the factor exp (— ikyvt)} by (A.5), in which v = 0. We must note that this expres-
sion cannot be used in the fixed coordinate system; similarly to the expression (A.2) when
v = 0, it is only valid for

|21 < (82) ~ 1/ (AK) -~ YT B | (A6)

where (Ak) is the effective bandwidth of the spectrum. In the region | x| > (Ax), oscilla-
tions of / decay exponentially with increasing Tx |+ The fixed point of the immovable coor
dinate system moves, in this case, with the velocity equal to v, therefore (A.6) does not
hold when ¢ -+ ce. This makes possible the assertion, that, when v # 0 and the instability is
absolute, then the perturbation initially increases according to (A.3 and A.5) and then dis-
appears,

In a bounded system the time of motion of the packet ¢ ~ 1/(5v) is finite, therefore (A.6)
holds when x~ I provided that | po*| v > 1. Discreteness of the spectrum becomes, how-
ever, important and {4.11) with (4.13) should be used instead of (A.5).

Thus, in the case of removable instability, the appearance of periodic motion is governed
by the boundedness of the system.



1.

2.

3.

4.

5‘

6.

7.

8.

9

Occurrence of space-periodic motions in hydrodynamics 51

BIBLIOGRAPHY

Landay, L.D., On the problem of turbulence. Dokl. Akady Nauk SSSR, Vol. 44, No. 8
1944,

Stuart, J.T., On the nonlinear mechanics of wave disturbances in stable and unstable
parallel flows, J. Fluid Mech,, Vol. 9, No. 9, 1960.

Watson, T., On the nonlinear mechanics of wave disturbances in stable and unstable
parallel flows, J. Fluid Mech., Vol. 9, 1960,

Vedenov, A.A. and Ponomarenko, Iu.B., On the onset of turbulence. Zh. eksperim. i
teor. fiz., Vol. 46, No. 6, 1964,

Ponomarenko, Iu.B., On abrupt onset of steady flows in hydrodynamics. PMM, Vol. 29,
No. 2, 1965.

Ponomarenko, Iu.B., On a form of steady motion in hydrodynamics. PMM, Vol. 28, No.
4, 1964,

Taylor, G.I., Stability of a viscous liquid contained between two rotating cylinders,
Philes. Trans. Soc. A, Vol. 223, 1923,

Pupp. W., Uber laufende Schichten in der positiven saule von Edelgasen. Physik Z.,
Vol. 33, 1932.

Malkus, W. and Veronis, G., Finite amplitude cellular convection, J. Fluid Mech., Vol.
4, No. 3, 1958

10. Naimark, M.A., Linear Differential Operators. M., Gostekhizdat, 1954.
11. Lin Chia~Chiso, Theory of Hydrodynamic Stability. (Russian translation). I1zd.-inostr.

lit., 1956.

12. Landau, L.D. and Livshits, E.M., Mechanics of Continuous Media. Gostekhizdat,

1954,

Treanslated by L.K.



