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A nonlinear aqustioa is derived for the amplitude of a one-dimensional unsteady flow resul- 
ting from s disturbance in the stability of the primary flow. The latter is also assumed to be 
one-dimensional rmd independent of: and the spatial coordinate. Supercriticality is assumed 
to be amall and the wave number spectrmn to k discrete, though-arbitrarily dense. The eq- 
uation is simplified under the assumption that the secondary flow can be represented using 
the process of superposition of the wave packets with multiple wave numbers (accumulating 
perturbstions form a narrow wave packet). The equation has a large number of stable.steady- 
state solntions differing from each other by their wavelengths, and a unsteady problem is 
solved in order to obtain the value of the wavelength. The latter solution is obtained in the 
form of a series in the terms of the initial smplitude, and converges when t is finite. When 
c is large, the series is summed and validity of the solution is thus extended to the values 
of t at which the series diverges. We find that a periodic motion is established in the sys- 
tem and, that its wavelength characterizes the perturbation with the largest increment. A 
double periodic turbulent motion is established for discrete values of the parameter (for 
which the largest incraucnt possesses two pcrturbationsl. 

1. It is well known that, when the steady-state becomes unstable, s periodic motion of 
amplitude Q whose modulus satisfies [ 1 to 6’1 

dg I dt = 2q (y + aq + bq2 + . ..). (I=IQl” (I.11 

may be set up in the system. In this equation the increment y of the accumulating (in the 
linear theory) perturbation and the magnitudes a and b (connected with the nonlinear terms), 
sre functions of the parameters h; when X is critical, i.e. AZ, y= 0. 

Eq. (1.1) was derived under the assumption that the spectrum of cigcnvalues of the line- 
arized boundary value problem is discrete [l]. This is the case when e.g. the fluid moves 
in a limited volume. In this paper we consider bounded systems, in which the longitudinal 
dimension 1 is large compared with the transverse dimension (e.g. in the problem on the flow 
of fluid between two rotating cylinders 171 the length I of the cylinders is assumed large 
compared to the gap between them ; again, in the investigation of the positive gas discharge 
column [Sf, the length of the column was assumed large compared with the radius of the die- 
charge. tube). When the steady-state and stability of such systems are investigated, the end 
effects are neglected and the length is assumed to be infinite (1= L-O). This implies that the 
steady-state parameters are independent of the longitudinal x-coordinate, while the eigen- 
functions of the problem of stability of the steady-state are proportional to exp (ikx) where 
the wave number k may assume any real value. For any k there exists sn infinite set (branch) 
of eigenvalues p = y+ in and each eigenvaluc considered as a function of k, defines a con- 
tinuous set (branch) of cigenvalues. 

Fig. 1 illustratea the typical case of the onset of instability following the change in the 
parameter value; the broken line shows the decrement of one of the stable brnnches (which 
characterize only the decaying perturbations). The increment of the accumulating perturb& 
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tions will be maximum when 

k = k,(h) 

r (k) = TO + ‘Inro” (k - ko)z 

(I.21 

fro” < 0) 
where, as usual, l/k0 is of the order of the transverse 
dimension of the system. 

Supercriticality A = A - XI can be defined by the 

half-width of the A-interval in which y(k) > 0 

A = yr-22rolroll-m (1.3) 
Iu &e following we shall always assume the supercriticality to be sufficiently small to 

ensure that A < k,. 
The state of t,he systems under consideration is defined in terms of the parameters of the 

infinite problem (“Iongitudinal” boundary conditions influence this state only near the ends 

x= f% I). Therefore in the following the boundedness of the system is only reflected in 

the fact that the deviations of the parameters from their equilibrium values can be given in 
terms of a Fourier series in x. Consequently we find that the wave numbers assume the fol- 

lowing discrete values 

k = 26n, cS=n/z (n=o,+i,...) (1.4) 

in all relations f(k) of the infinite problem. Here k o defines approximately the wave number 

x of the discrete spectrum, associated with the largest increment 1% - k,l \( 6. 

‘I’he last expression implies that the approximation 1 = OD is applicable when 8 <<k,. In 
the following we shall assume that this condition holds, although the relation between 8 

and the half-width A in (1.3) may be arbitrary. 
If A < 6, then only one perturbation accumulates in the system. Its wave number is 

x 1 k* and its amplitude is given by (1.1). When a < 0, then a steady, space-periodic motion 

whose wave number is Xn ke) is set up in the system. 

If the supercriticality is large enough to ensure that 

S<A<ka (1.5) 

then a large number of perturbations (infinite if 1 = =) accumulates in the system. In this 
case it is not at all obvious that the small amplitude motion which vanishes as A -)r 0, 
should be space-periodic. If we accept this as an empirical datum, then the theoretical de- 
termination of the amplitude and the wave number of the steady-state periodic motion, will 
yield only one Eq. (1.1) in which the coefficients will be known functions of parameters and 
of the wave number [5 and 61. Thus the wave number of the steady-state solutions will re- 
main an undefined parameter of the theory f9, 5 and 6‘1. 

To remove this indeterminacy, an equation (2.15) was obtained and solved in this paper. 
It describes the interaction of a large number of accumulating perturbations. 

2. In this Section we shall derive a method of obtaining the amplitude equation for the 
accumulating perturbations from the initial hydrodynamic equations of the type 

dX i dt = F (X, d t...) J ds, d (...) / dr, r, k) (2.4) 

where the vector X denotes the set of hydrodynamic variables (density, temperature, map 
netic field etc.), x is the longitudinal coordinate and r denotes the set of “transverse” co- 
ordinates. 

We can assume without the loss of generality that the e~ilibrium state (independent of 
t and z) is given by X I= 0 and that the boundary conditions are linear in X, homogeneous and 
do not contain any derivatives of X with respect to t [5]. 

Initial deviation from the equilibrium state is assumed small 

x (2, t = 0) = sxo (4 

Here the amplitnde 8 + 0 and the function X, which describes the form of the deviation 
is nonnaiized in some manner. In the following we investigate the cases when X remains 
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small at any instant of time and when (2.1) can be expanded into 

2g = LX + ; (LrnX) . . . (L$q f2.2) 

where the matrices L are, unlike F, independent of X and the boundary condition has the 
form LOX = 0. Salotion X is sought in the form 

X = 2 Y (k) eikx, Y(-k)=j;;(k) (2.31 
k 

where k assume6 tbe vahtcs given by (1.4) and the bar denotes a complex conjugate. Inser 

ting (2.3) into (2.2) we obtain the following equation for Y(k) 

- - L (k) Y = ; x lLzn (kx) Y (kd] 
aY 
at . . .[Ln"tkn) Y ('41 (2.4) 

n=aP 
Y (f = 0) = eYo, .& (k) Y = 0 (kl+. . .+k,=k) 

Here the matrices L(k) are obtained from the corresponding matricee appearing in (2.2), 
by means of the substitution dL..)/d x + ik. Solution Y is sought in the form (*) 

Y (k, rt ?A = QZ (k, r, W + ‘; 2 2, +-I, . . ., k,; rr h) Q @I). . Q (k,J (2.5) 
n=a k 

where the amplitude Q(k, t) satisfies Eq. 

+=PQ+ ;~ff,&,, . . ., 2,; h) Q (k,) . . . Q (k?) (3.6) 
n=a k 

aad be magnitudes p, Q, 2 and N become their c,ompIex conjugates on change of the sign 
of the wave numbers. 

Eq. (2.4) after the insertion of (2.5) and (2.6) becomes 
m 

QD + 2 2 Q @I) . . . Q (‘4 D, Ch, . . .; M = 0 
n-a h 

Values of 2, and H, are found, consecutively, from Eqs. Do = 0 together with the boun- 

dary condition L,Z,= 0. The linear problem 

D_=pZ-LZ=O, LJ = 0 (2.7) 

defines the equilibrium stability, We assume that the onset of instability follows the course 
shown in Fig. 1. Parameters of the system are assumed to be such, thst (X.5) holds. 

In (2.5) and (2.6) the eigenvslue p = y+ ifi and the eigenfunction i! of the problem (2.7). 
both defining the ac~muIating perturbations, must be used. 

In tba nonhomogeneous problem 

L), = ZnP, - LZ, + ff,Z + ‘YR = 0, L&n = 0, P, = p (k,) +. . .+ p (k,) (2.8) 

the vector Yo is expressed in the terms of previously found H and 2. 

Solution 2, can be obtained [ 101 with help of the Green’s matric Cfr, p, P, f of the homo- 

geneous problem (2.8) 

Zn = ” C (r, PI Pn) lH,Z (PI+ Y,, (~11 dp s 
where the integration with respect to transverse coordinates p is performed over the trans- 
verse section S of the system. The Grcen’u matrix can be represented by 1101 

+) Hera and in the next sum, wave numbers appear which satisfy the condition kt +-+ k, 

- k. 
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ZZ 

c=- (Pn-p) (z.f_J,+G_ 
G-f 

where G, III rsgular whsn P, z p, II ia the eigenfnnctfon of tbe problem conjugate to (2.7) 

correspo6ding to tbe eigenvalue ii and the scalar product is 

<Z.v,=“(z--i)dp 

b 

Tbe difference P, - p may become very small, e.g. if y(k) = 0, then Ps = p when kl = 
I k,= -k, =k. 

In accordsnee with (2.8) and (2.9), the vector Z, will be finite for any k, if 

H,<Z.Lf)+<Y’,.U)=0. Z,= 
a 
* C_ (H,,Z + Y,,) dp 

Here tbe firat equation defies H,, while the other defines Z,. 
Let yt be a minimal decrement of perturbations associated with stable branches, We may 

expect that when s + 0, then (2.5) and (2.6) describe the behavior of the system beginning 

at the instant t * l/(yo + yt), when, in accordance with the linear theory, only those per- 

turbations are essential which are associated with the unstable branch. Conaeqnsntly we 

may take 

Q (t = 0) = eA (k) (aio) 

aa the initial condition for (2.6). Here A is the component of tbe initial vector Yo corresp~n- 

ding to the accumulating perturbations 

A(Z*U> = <Y,*& 

Generally speaking, Eqs. (2.5) and (2.6) are more accurate than the approximation in 
which the perturbations with large decrement given at t = 0 are neglected. For exyple, in 
the case illustrated in Fig. 1, tbe initial perturbation afnplitudea of the unstable brsncb for 
l.argek need not be taken into account, since their decrements exceed the perturbation dccre- 
menta of one of the stable branches. We csn remove this excess of accuracy by reducing 
(2.6) to an equation for accumulating perturbations with the wave number 1 k 1 P k,; these 
pe~nrba~ons will form a wave packet of the bandwidth equal to 26. 

By virtue of the condition A << k o, nonlinear effect in the spectrum Q(k) causes tbe sep 

aration of the additional wave packets whose effective wave number is m/c, (where s ia an 

integer). The amplitude of these packets csn be expressed in tbe functional form in tenna 
of the amplitudes of tbe fundamental packets 

06 

while the equation for QUc = k,) has tbe form 

(2.11) 

(2.12) 

Here and in tbe following we use the following abbreviation 

;r: ~QI . . . Qn = 2 f h . . ., k,d Q (kd . . . Q (k,), 1 kf 1 z ko 
k 

md h become complex conjugates when k change their sign. 
To find k,, n + Im we must put k P nk, in (2.6) and assume in the summation performed 

over k, that k, I m,k,, where m is an integer. Inserting (2.11) and (2.12) into (2.6), we obtain 
co 
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while the linear algebraic equation 

Q, *.,l-?l, = 0 

yields h,, n + ti. 

Determination of h,, n + ?,,, must however be preceded by the determination of all h ap- 

pearing in the matrix to the left of the diagonal drawn through h,, n + 2m + 2 (part of the mat- 

rix is shown below) 

. . . II, . . . hod . . . 

P . . . 1’13 . . . h5 

. . . I ‘22 . . . ha . . . 

. . . . . . 1133 . . . fbi 

. . . . . . . . . h 14 . . . 

The wave packets are obtained from Y(k) in the similar manner. Relations (2.5) and 

(2.11) yield 
03 

Y (Ii z n to I- )= 2 2 v,, n+amQ~...Qa+,m (2.13) 

where the magnitudes V are expressed in terms of 2 and h. 
R’e can assume that the functions f(kt,..., k,) appearing in the sums of the form cfQ1, 

. . . Q, are symmetric, since the sum should not change u_nder the pennutation.of k k 1’**” & 
We use this property together with the relation Q(-k) = Q(k) to reduce (2.12) and (2.13) to 

03 

Y tk = nko) = 2 2 Yn, n+amQ~ . . . Qn+m&w,,+l ’ . . %+w,, (2.14) 

$= PQ i- 2 2 rmQl . . . Qm+l&,,+a . . . Q,,,, 
m=t 

(2.15) 

Y 
(n + 2m)! 

n, n+zm= m! (n + m)! v (kl,. . ., k,,+,,,t - kn+m+lt . . ., - kn+2m) 

rm= (h + 1) h,, l+a,n (h. . ., $+,,,, - k2_,,,, . . ., - kl+& 

In (2.14) the summation over k is performed for the values satisfying 

kr +. . .+ k,,+, - $,+m+l -. . .- kn+2m = k, ki z k. 

which, at n = 1, yield the condition for the sums over k in (2.15). 

(2.16) 

3. We shall first consider the stability of a steady-state periodic solution whose wave 

number is k. This solution is defined by (2.14) and (2.15) in which only the amplitude Q(k) 

is different from zero; similar relations were obtained in [P: 3 and 51. 

Eq. (2.15) for the steady-state amplitude Q(k) has the form 
00 

- = Q [P UC) + 22 %a@, w PI dQ 
dt 

m=l 

Here and in the following 

co, (k’, k) = rm (k’s J$, . ._ -, k) = ?-ml + iQ?-n 
am 

(3.1) 

Let us now assume that the amplitude distribution differs from the steady-state distribu- 
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tion (in which only Q(k) f 0) by the infinitesimal perturbations Q”(k ‘); then (2.15) can be 

linearized with respect to these perturbations taobtain, taking into account (2.16) and the 
symmetry of P, 

From (3.3) it 
if, for any k: 

dQ”..= 
dt !;” [p (k’) _1- s (m + 1) o,(k’, k) qm] (3.3) 

WI=1 

follows that the periodic solution with the wave number k will be stable, 

U(k’,k)=r(k’)i- 5 %nW,W(~+l)!Im<~ 
77U=1 

(3.4) 

where (k) is given by (3.2). 
By 4 2.16), we consider only whose wave numbers which differ from k, by the amouats 

% A. Since the difference k’ - k Q A is small, we can write (3.4) with (3.2) taken into ac- 

count, as 

u=: q 2 mq”‘T,,, _t (k’ - k) -$$ + G (k’ - k)2 -$$ < 0 (3.5) 
m=1 

Here and below, functions of k’are assumed to be taken at k’= k. 
Let yt(ko, k,) < 0. Then (3.21, (3.5) and (1.3) yield 

4 (k) = - Y / ~1, j k - kol < A (3-6) 

uz qyr + (k’ - k) y’ + Vz (k’ - k)* y” = 

= - y. - y,,” (k - kJ2 + V2yo” (k’ - ko)2 (3.7) 
By (3.7)‘ the condition of stabili II < 0 

ber k satiafies the condition 1 k - 
olds for periodic soiutions whose wave n m- 

k~<A,,~.~lutionsforwhi~A>lk-kul>A/~, o 
are unstable with respect to the perturbations whose wave numbers k’&e given by 

(k’ - Ic)~ < 2 (k - kJ2 - A2 

Although investigation of the periodic solution stability strengthens restriction (3.61, it 
does not yield the exact value of the wavelength. The problem whether a periodic solution 
is established when the number of initial perturbations becomes large, remains unsettled. 
This can only be found in the course of solving the initial problem (2.15) and (2.10). 

4. We shall investigate, for simplicity, the behavior of the principal term X z 2ReXt t 
as I + 00, where 

Xl1 = 2 QZeikx (4.1) 
k-k* 

and Q satisfies E . (2.15) in which only the lowest nonlinear term is retained (for this ree 
son the index of + 1 shall henceforth be omitted). 

Solution of (2.151, (2.10) is sought in the form of a series in terms of the initial amplitude 
e 

Q -_ 5 $“+I Q(“) 

(4.2) 
n==o 

‘Se easily obtain 

6 m 

where the summation is performed over ki and over the nonnegative integers m satisfying 
tbe conditions 
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kl + ka - k, = k, m,+m,+m,=n--1 
From (4.3) we caa obtain Q(“) for large t. Let us consider 

(4.5) 

Inserting (4.2) sud (4’5) into (4.1) we find, that for large t, those terms of (4.5) will con- 
tribute most to XII, for which 

tRe(P-P)>j 
1x1 these terms the unity is small compared with the exponential part and can be neglec- 

ted, leaving only strong exponential dependence on the wave numbers. Below we shall see 

that in the factors independent oft, all those k, should be taken into account which are 

equal to the wave number x at the maximum value of y. 

Thus for yet >> 1 we have 

Q”‘= &$~exptf 

Similarly we can find that when y,, 1 >+ 1, then (4.3) i s satisfied by 

Qtnt = fnA (9)” xeexp tP, 

Pn =P(kd + . . . + P (kn+l) + P @&+a) + - . . + P &n+d 

(4.6) 

where the summation is performed over k, satisfying 

kl + . . . + kn+t - knrz - . . . A kzn+t = k (4.7) 
In the tams preceding the sum, all wave numbers are equal to X, while the coefficients 

f are given by the following recurrent relation: 

f,=L”ff f 7 n LI m, ms m,t lo = 1 P-8) 
m 

in which the summation is performed over those m, which satisfy the second condition of 

(4.4). 
Relations (4.61, (4.2) and (4.1) yield 

xl1 = i AEfn 5 Zeikr 2 (k) e”n’ 
7X=0 

(4.9) 
where the sum is taken over the arbitrary numbers /cl,..., k,, +, and k is defined by (4.7). 

Asymptotic behavior of the second sum of (4.9) depends essentially on t. If lyo”I 8% < I 
(which does not contradict the condition yo t >> 1 since 6 << !I), then the sums with similar 

k differ little from each other snd can be replaced by integrals over the wave numbers (see 

Appendix); for such I the system behaves like an infinite one. 

In the opposite limiting case 

t (Y - YJ > 1, Y =Y(X), y1 = max [y (x - 26), y (x + 26)l (4.10) 
the sum is asymptotically equal to the term 

2 (?t) exp Iixz + tp (x) + 2niY (x) 1 

in which kl=.,. = k 2n+,= X. When t is sufficiently large, a periodic motion whose wave 

length i8 equal to X is set up in the system 

(4.11) 
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Each term fn the sum in (4.11) grows exponentially, although the whole sum may remin 

finite St my :. The function of time appearing within the square brackets in (4.11) reprc 

sents a solution of tbe initial problem 

dQ/dt=pQ+rQaQ*,Q(0)=eA, p=yi-in, I’=B-ttD, y>O 

for large t. Indeed, after the substitution 
(4,.12) 

Q = RePt, T = (eaYt - 1) / (2~) 
the solution of (4.12) is easily obtained either directly, or employing the series (4.2). fn 
the first case the solution is 

Q = cAe*’ (1 - 2TR9 J A j’)--“rr’B 

while in the second case we have 

Q = de*’ $ f, (e* 1 A r T)n 
n=a 

(4.13) 

(4.14) 

which coincides with the function of time in (4.11) when yt B 1. Comparing (4.13) and (4.14) 
we see that the series in (4.14) converges(*) if 

~TBE” IA I2 < 1 

f, = r (2r + F). . . bzr + (n - 1) Fl / n! 

If B < 0 we have, for f + =, 

Q-+~Q,expit(~++Dq,), 9,=-TiB 

5. The results obtained above are easily generalized to the case of the exact Eq. 

(2.15). Again we obtain the expression (4.6) in which 

nf,=~rt~f,,...fmi*;fmi+2...fmZi+l ~m+...+~2i+1=~-4) (5.9) 
i=l m 

and where all wave numbers entering rare equal to X. hserting (4.6) and (4.2) into the 

SUlll 

we find, that any product of n + 2m magnitudes Qt) tends asymptotically to the term, in 

which all wave numbers are equal to X. Retaining only these terms we obtain 

X n.n+am - - Yn,n+zm (k, = . . . = knizm = x) einxrQnimqm 

where Q is E fuuction of time given by (4.111, with the coefficients f given by (5.1). We find 
that this function represents the solution of (3.1) for k = X, Q(Of = eA (XI and yt >> 1, and 
we can easily confirm it by obtaining a solution of (3.1) in the form of (4.2). 

Thus, when t is sufficiently large (boundedness of the system becomes then essential), 
a periodic motion of wavelength X is set up in the system. 

This motion is described by (2.14) and (2.15) in which only Q(X) 4 0; such relations can 

be obtained using the methods given in [2, 3 and s], assuming that the wavenumber (which 
becomes the undefined parameter in all these methods) is equal to that value of x, for 
which the increment of the discrete spectrum has the largest value. 

Behavior of the system at large t can also be studied by obtaining the solution X of Eqs. 

(2.1) in the form of a series in terms of the initial amplitude e and gumming the terms con- 
taining the same factor exp (ikx). 

l ) When t + =, we continue the solution which has the form of a power series, andytfc8lly 
into the region of divergence of the series. Similar procedure is widely applied in stat- 
istics and qasntum field theory. 
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Let us now investigate how the steady-state motion of the system depends on the para- 

meter when (Fig. 1) k, is a function of x 

kit f.z) = k, + k,’ (5 - 5*), k,‘#O (5.3 f 
in accordance with (X.2), in this cese there exists a discrete set of values &, for which 

the increments of the discrete spectrum achieve the maximum at two points k, f 6. From 

(5.3) it follows that 

h n+l - in = G ! 1, Gr = 26Z/ I k,’ 1 (5.4) 
Thus the wave number x of the periodic motion will remain constant within the inter 

vals & < X < hn+t and will change discontinuously by 28 when A passes through A,. If 

k*‘> 0, then x increases together with increasing supercriticality X - A*. 

Discontinuous change of the wave number is acompanied by the discontinuous change in 

the smplitude of the steady-state motion. Let us denote 

Q = Q (% UY 9+ = Q (x + 26, &i) 

l7elation (3.2) yieIds, with accuracy of the order of “8, 

Q+ - q = 25 [(as / b’k) /’ (8s / aq)lsa, 

where S denotes the sum in (3.2). If yt(k+, X,1 < 0, then q is small when the value of the 

supercriticality is small and 

(q+ - q) t q = G,ll, Gt,, = 261 (yi-*dy#k)h.,,u. (5.5) 
the amplitude is approximately given by (3.2) in which k = k, (A): 

q (x, h) = q (Ic,, h) [I + (x - k,) C, ! (261)1, Ix - k, I < 6 

Discontinuous amplitude changes given by (5.5) take place whenever h passes through 

A” irrespective of the direction of change of & unlike the chsnges which tske place under 

the impulsive excitation [4 and 51. 
When X= h, , the steady-state motion of the system ceases to be periodic and becomes 

turbulent; it is then described by expressions (2.14) and (2.15) in which only Qlt= Q(k, f 
f8) differ from zero, Indeed, the second sum of (4.9) is asymptotically equal to the sum of 

those terms, in which k, = k, f 6, i = I,..., 2n + 1, and where the values of the factors pre- 

ceding the second sum can be taken as those at is = k,. Then the expression (4.91 becomes 
(4.1) where Q is the solution of the initial problem 

(5.6) 

Q (0, k#kof@ = 0, I? = lrl (k,, k,,, k,) = B -I- iD, B<O 
at the large values of t. Steady-state solution of (5.6) is 

Q (k # ko rf; 6) = 0, Qk = dfesp it ($2, + 3qD), q == - I/ST/B 

and in the steady-state (5.2) represents a wave packet with the wave numbers given by 

li = nk, + (N - 29 6, N = n -j- 2m, i=O,l, . . . . N 

The bandwidth of this packet is equal to 28N, Beginning from N P ko/& the wave pack- 

ets appearing in the sum 

XN= &N-(i.~-,Q IN, X-~,N=%.N 
i-0 

merge together, filling the whole range of the wave numbers f- Nk,, Nk,h Since 

X = X, + X9 + . . . + XN + . . . 
it follows that in the steady-state pulsations may occur, which can be of any scale. At 
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lugs x, turhalenca developa. 
If XI X,, then the turbulent motion described here sximta for some t when Iyo”l a2t B I 

and the inequality (4,101 haa the opposite aenae (naing the terminology of [IZ] we csn aay 
that two degrees of freedom are excited in this turbulent motiod+ 

6, In one_dimenaional prohleme diacuaaad sbovs, k and a were pure numbers. When COP 
aidering problama of motion of a medium between horizontal planes. we meet take k and a 
aa vectors aud assume the product kx to be a scalar product 

kz = k’z, f k%, IhI c ‘f¶ 1 

In this case the vertical coordinate xS will be the transverse one, and the distance bet- 
ween the planes will be assumed very wall compared with the horizontal dimmaion f. 

Increments y of perturbations of plane-parallel flows in tbe zt-direction will be the lar- 
gest [ 11] when k 2 I 0, kl f 0. Therefore we can reduce (2.51 and (2.61 to (2.14) snd (2.151, 
provided that the supercriticality is small. 

Let k+ = (k*l, 0) be a vector for which y(kr , A.) = 0. If in (2.151 

B = Re rl (k, = k, = k, = k,, n,) < 0 

then, provided that the supercriticality is small, a one-dimensional motion (k 2 = 01 of a 
small amplitude will be met up in the system. 

When B > 0, a large amplitude motion takes place in the system, which may be neither 
one-dimensional, nor periodic. it should disappear in the region x < A+ with dccreaaing an- 
percriticality, when the infinitesimal perturbations decay (4 and 5]. 

In the problem dealing with the onset of convection between two horizontal planes the 
magnitude y = y( 1 k 1 ), therefore a large number of perturbations whose wave vectors are 
equal in their moduli accumulates in the system, even when the supercriticality is arbitra- 
rily small. Unlike the problem on plane-parallel flows, the latter problem is basically two- 
dimensional and needs R separate consideration, 

7. In conclusion we may note that, when the system is bounded, the steady-state motion 
has the wavelength for which the linear increment is largest. In some cases this also ap- 
plies to infinite systems. If, however, the instability of an infinite system is removable, 
then (see Appendix) the ayatem returns to the atste of equilibrium, 

Discreteness of the wave numbers imitates the discreteness of the spectrum of the ays- 
tern, when the boundary conditions at a = f ?41 are taken into account. Eigenfunctiona f,,(x, 
rf of this spectrum corresponding to the accumulating perturbations, can be characterized 
by the number of extrema in a; this number increases with n. When n ia large, the dependence 
off,, on x can be isolated (except in the end regions) in the form of exp(inc,x/l) where 
co * 1 may depend on n; thus the ri#t-hsnd aides of (5.4) and (5.51 may alao depend on a. 

A p p e n d i X. We have said before that, when t821ya“~ GC 1. then the bounded system 
behaves like sn .infinite one; in this case summation over k can be replaced everywhere by 

integration as e.g. 

The second sum in (4.9) csn be replaced by the product of integrals of the type 

J (3, t) = 
s 

2 (k) exp [ikz + tp (k)] dk (A.1) 

Behavior of this integral at large L determines the type of instability of the equilibrium 
state. We ahall call the instability absolute when 111 + 0~ am z -PW and removable, when I -+ 
+ 0 [ 121. Generally apeaking, we must know how p (k) behavea in the complex k-plane, be- 
fom we can obtsin sn estimate for I. The case $ven below when the group velocity u = Q,’ 
in the expansion 

P (4 = PO + tk - ko) tu + ‘/a PO” (k - ko)’ + . . . 

is muall, is an exception. Group velocity can be amall in those systems, in which a P 0 for 
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home h. When u is smell, a saddle point (defined by p’= 0) existe near k = k, and we have 

J = (- 2n / ip’)“’ Z (k) &kx+pt (l+=) (A.2) 

k- - h - iv/ PO” = a + 9, p = po + VA v2 / PO” = y + d-2, p’) = PO” 

Let na assume that the curves yo = u = 0 intersect in the hp-plane (Fig. 2). By (A.21 
the inetebility ir abeolnte if 

y = yo + Wo” fl IPOT > 0 

Let the parameters X and p be such, that the instability is ab- 
solute (the corresponding region in Fig. 2 is shaded). Then from 
(4.6), (4.9) md (A.21 we have 

Xn = 2 AP, / Ae p f,Z (k + Zn@) (- -$j’* 

P n>o 
2x n 

LIP 1) 

(A.31 

Fig. 2 7 erp (ir (h + 24 + (p + 2+f) t] 

where A = A (k) while f, ia given by (4.8) in which r/n is replaced by 

r (k, k, k) / [2n? + P (4 - P (k + 2~~~)l (A.41 

and the real part of the denominator is assumed positive 

n < no - -I% i (Yo”B’) 

If we make the substitution k + 2ni 6 = k in the expression for f, and Z, then (A,3), (A.41, 

(4.13) and (4.14) yield readily 

Xu =: 2 (k) eikx+pf Ae 
1 Ae I2 2s exp (2yt - Zpz) -%rfB 

V I P” I ! (A.51 

which becomes exact when o = 0. When B < 0, we have 

X1, 3 Z VGxp i Iaz + t (Q +.#I, q= -y/B 
In the case of removable instability, nonlinear effecta are unimportant at any t provided 

that the initial deviation from equilibrium is sufficiently small. Return of the system to the 
equilibrium state can be adequately described by linearized equations. 

Fig. 2 shows that, when the supercriticality is sufficiently small, then the instability is 
removable provided that v f 0 at the boundary of stability. This remains true even for lar- 
ger values of II, since the decrement y inCreases together with u. In a coordinate system 
moving with velocity u in v, the instability is removable when yf v - P)\< 0 (an estimate for 

f(% - ut, L) ten be obtained from (A.21 by making the substitution Y -+ (u - u) and multiply- 

ing the result hy exp(- ik, ut)). When u = u, then X1,(* - wt, t‘l is given (with the accuracy 
of up to the factor exp (- ik,vt If by (A-S), in which v = 0. We must note that this expres- 

sion cannot be used in the fixed coordinate system; similarly to the expression (A.2) when 

tr = 0, it is only valid for 

I 2 I < (A4 - i/ (A4 ‘u t/i (A.61 

where (Ak) ia the effective bandwidth of the s ectrum. In the region 1~1 > (Ax), oecilla- 
tiono of I decay exponentially with increasing x 1. The fixed point of the immovable COOF P 
dinate eyatem movee, in thim caee, with the velocity equal to v, therefore (A.6) does not 
hold when t + o. This makes possible the assertion, that, when u 4 0 and the instability is 
absolute, then the perturbation initially increases according to (A.3 and A.5) and then dis- 
appear8, 

In a bounded ey~tem the time of motion of the packet t * X/(&u) iis finite, therefore (~.6) 
holdo when x h 1 provided thet 1 po”I 6u > I. Discreteness of the spectram becomes, how- 
ever,‘importmt end (4.11) with (4.13) should be used instead of (A.5). 

“f&as, in the cue of removable instability, the appearance of periodic motion is governed 
by the boaadadaeas of the system. 
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